Sakai Tool Destinations

May 10, 2006

Please direct questions or comments about this document to:
Glenn R. Golden, ggolden@umich.edu
Tool = user interface aspect of application.

user-agent is the program running on the end-user's computer that translates a tool's html user interface into an interactive display. Usually this is a web browser, but it may also be a Sakai desktop-portal.

Tool can run on server and interact in browser or other html window, or can run on client. For this discussion, we are talking about the tools that run on a server, and interact with the end user with URLs and html displays.

We want to be able to do a number of things with our tools.

0- establish various navigational destinations within our tool, represented by distinct URL paths from our tool's base URL

1- encode data-sending requests back to our tool, to various destinations, in our tool's html interfaces

2- encode pure navigational requests back to our tool, to various destinations, in our tool's html interfaces

3- respond by causing the portal to change focus, sending the end-user to another portal destination

4- respond by causing some other tool placement to change navigational state, assuming a new current destination for our user

Some of the features that relate to these goals include

· proper browser back-button behavior

· vicarious bookmarking of tool states for repeatable behavior

· tracking of end-user activity using server web logs

· more collaborative tool interaction

To achieve 0, we need to design a URL destination space for the tool.

For example, consider a simple but somewhat representative tool.

· When you first come to the tool, you get a context-sensitive list of things.

· You can select any thing from the list to change to a view-the-thing mode.

· From there, you can choose to edit-the-thing, or go back to the list, or make a new thing.

· From edit you can post changes, or cancel changes, in either case return to the list.

· We also have an options and permissions editing mode.

We can create the following tool destinations, each represented by a URL path:

· /list - show the list for the current placement context

· /view/123-45-6789 - show the view mode for thing id = 123-45-6789

· /edit/123-45-6789 - show the edit mode for thing id = 123./45/6789

· /edit - show the edit mode for a new thing

· /options - present an options display for the tool placement

· /permissions - present a permissions display for the tool placement

Each tool destination’s unique URL path must always show the exact same sort of information. The specific information changes as the state of stored information changes, and by context, and by end-user permissions and preferences, but it stays essentially the same. The view destination would never show an edit or a list.

To keep the URLs cleanly mapped to destinations, we sometimes respond to a user request by asking the user-agent to change to a different URL than the one it requested. So if a user sends a view destination URL to a tool, but the application logic says that they need to stay in list mode, we cannot just respond with the list mode display, as that would leave the user-agent with an inconsistent URL and tool user interface (it would think that the view URL gives a list display). Instead we first tell the user-agent to redirect to the list destination URL, and then, after the user-agent makes the new request, respond appropriately.

Another thing that is vital, especially with web browsers, is to never leave behind a URL to a POST request, which causes the browsers "back button" history to become distorted. Any POST request is a data-sending request (i.e. #1 in our list), not a navigation-only request (i.e. #2 in our list), although there may be a navigation component to the data-sending request. So after each data-sending request, we must respond by telling the user-agent to change from the POST URL to a pure navigational destination URL, whatever that needs to be. For browsers, the back button history then shows the true navigational history, ignoring that POST URL.

If you consider a portal running on the server that uses a web browser user-agent with frames for each tool, we have a number of URLs in play at any one time. There is the portal URL, the URL of the main window, which identifies the portal destinations. In this sense, a portal has the same URL - destination requirement as any other tool. The other URLS, for each frame, are to specific tools. These are all different tool destination URLs, representing the tool's current interaction state with the end user.

The portal’s URL, which represents the entire display, never changes as the tool URLs change as the user navigates through the tools. We want the portal URL to represent a specific portal destination, and we don’t want the URL to change (causing the entire screen to reset) with each tool navigation. Thus, portal URLs do not reflect the tool destinations.

Yet, when we do a refresh of the portal window, we don’t want all the tools resetting to their initial destinations.

So, from the portal's point of view, it needs to be able to specify a URL that tells the tool to "do the right thing, wherever you are in your interaction state with the end user". This is the null-path, or base, tool URL.

A tool's response to the null-path URL is to restore whatever the appropriate destination URL is for this user. Should a tool respond directly with that display? No, since that would cause the user-agent to think that the null-path URL is some specific destination. Instead, the tool responds to the null-path URL by asking the user-agent to redirect to some other destination URL. For this, the tools need to keep track of where they are with each user, in the server-side toolSession.

When a tool gets a null-path URL, and has no destination stored for the current user, as will happen when the user is first starting to interact with the tool, the tool can choose a "home destination" URL for the redirect. This is why in our URL destination design above, we didn't map the "/" null-path to list mode. For that example, we would configure our tool that "/list" is the home destination.

With knowledge of our tool's URL model, we can easily make URLs back to our tool for navigation or data-posting. Support in Sakai's Web utility class makes the generation of URLs back to the tool easy - or we can do it in the normal Servlet way, as our servlet request object is properly provisioned to do the right thing.

Support in Sakai's Tool model for the current destination for each user- placement makes it easy make selected data-post requests also be navigational requests; they just need to set a new current destination before redirecting. This also makes the response-by-redirect needed for all posts and some navigational requests easy to accomplish.

Further, Sakai's Tool Dispatcher Portal takes care of the null-less request redirects, home mode selection, and tracking the current destionation for each user-placement.

So really, all an application developer needs to do is

· design the tool destinations, and map them to URL paths

· register the home destination with the tool registration

· separate processing of data-posts and navigation requests

· use the appropriate support methods

This will not be that hard.

So that leaves us with our #3 case above. Sometimes we want to respond to a user request to our tool by asking the portal to change focus. When a user clicks this button in our use interface, we want to send the user to another portal destination. This brings up two questions:

· what sort of destinations do portals support?

· how do we do it?

Sakai's current portal is a Site portal. It uses the Sakai Site structure, the set of Sites and their SitePages and ToolConfigurations, to form portal destinations. This means that portal URLS and destinations are Sites and SitePages. ToolsConfigurations (Placements) are not directly destinations of portals; they live in clusters on SitePages, and when we go to a SitePage, we get all the tools.

So if we want the portal to change, we need to ask it to change to some other Site or SitePage.

Another way of thinking about portal destinations is context instead of Site. If we map each Site to a context, and each SitePage to a sub-context (child context) of the Site's context, then we can claim that our portals are context based - they send users to different contexts in Sakai. Once at a context, the portal finds the Site and SitePage at that context to control the display.

This way we can have a cleaner way to talk about portal destination, leaving Site out of the picture, and we make room for other sorts of context other than Site-based.

So, to accomplish #3, we need to tell the portal to change focus to another context.

We need to be careful - change focus does not necessarily mean replace a single window's contents with the display from another focus. The portal might support multiple windows, and a change focus would either find the window that already exists for this context or launch a new one. What this means for our tools is that we still need a current destination after asking the portal to re-focus, as the tool is still “running”.

So, in response to a user request where we want a portal re-focus, we

· tell the Tool model that we want a portal focus response, and

· make sure we leave ourselves in the proper current destination so that our next navigational request (which could be directly following this response) does the right thing.

Note that we accomplish the portal re-focus without any URLs. The user request URL is just a normal data-posting or navigational URL to our tool. This means that there's no magic bookmarkable URL as a side product of all of this... but these already exist. These bookmarks to portal focus destinations are simply the portal's URL design, the different URLs that take users to different portal destinations.

So why can't we just encode a link to a portal URL in our tool? It appears to be a simple navigational URL, with no data posting, and for tool navigational URLs we can do this. But if placed a link in our tool user intrface directly to a portal destination URL, we would be asking our tool's user-agent space (i.e. frame in browser) to do a portal navigation, which is not what we want. (When folks have tried essentially this recently, they end up with "portal in a portal").

How about we make a portal URL link in our tool, but to a "new window"? This could work, but makes pretty heavy assumptions about what the portal is. For a desktop portal showing our tool, this might not be desirable. Better to let Sakai make the right choice for us, and not worry about this.

So we keep our tool user interfaces clean, populated only with links back to our own tool URL space.

We have one more requirement to deal with, our #4, causing another tool placement to change navigational state. This is an extension of #3, where we want to change portal focus to a specific context, and to a particular destination within some tool placement in that context.

For example, some other tool might want to send the user to a context with our tool, and instead of being in list mode, be in edit mode for a particular thing of ours in that context. That other tool would need to cause our tool placement in that context (for the current user) to change the current destination from wherever it is to something like:

/edit/123-45-6789

This assumes that the other application could access our application's API to find ids for our entities in the context, and also assumes that it can ask somebody to find the placement of our tool in the context. This somebody is probably Site, since we are talking about tool placements, we are really talking about Site structure.

To accomplish this, the other tool would:

· use our application API to find (or create) an entity and get its ID

· use knowledge of our tool's destination URL design to form a tool destination path

· use the SiteService to find the Site at this context, and find the SitePage with the tool, and the ToolConfiguration on the page (which is a Placement),

· use the Tool model to change the current destination for this placement to the new destination

And then ask the portal to change focus to the context (Site and SitePage) that contains the Placement. When that tool is invoked with its null-path URL, it will redirect to the destination set above.

Pretty slick.

Asking the Tool model to set a navigational state is not much different from changing our own state. We are collaborating tools, and we trust each other to do the right thing and not be malicious. We just need to find that placement’s toolSession, and change the value there.

what about css, js, images, etc - do we need these mapped to our tool URL space, or keep them simple links?

mapping in helpers

- 1 -
Copyright 2006, Sakai Foundation, Creative Commons Attribution 2.5

