 The Organization of Sakai Enabling Technologies and Information Models

April 10, 2006

Please direct questions or comments about this document to:
Glenn R. Golden, ggolden@umich.edu
Considering all the Sakai software, if we put aside the code that clearly belongs to individual applications, we are still left with some code. What remains are the Sakai enabling technologies; function and information models that are used in common by many Sakai applications.

The enabling technology functions are available to application developers to use in the applications, to make it easier to write their code to the level of functionality desired in Sakai applications.

The enabling technology information models provide access to information commonly used by many applications, such as end-user, groups, permissions, and context organization.

We need to organize, package, manage, document, maintain and evolve these non-application collections of software in Sakai, just as we do for the application code.

This document describes the Sakai enabling technologies. The functional technologies are:

· Universal Components

· Collaborative Tools

· DB

· Server Push

· Email Out

· Memory Cache

· Presence

· JSF

· Velocity

· Util

The informational technologies are:

· Entity Bus

· User

· Authorization Groups

· Context

· Usage Events

· Course Management

· Alias

· Site

Enabling Technologies - Functional

The units of code that forms enabling technology functionality for Sakai applications can be organized by the functions they provide and the development paradigms they support.

Similar functional needs (such as user interface display management) can be met with many different technologies, each supporting a different way to build an aspect of a Sakai application. We need options to support the Sakai development community’s wide range of experience and preferences.

The software for each of our enabling technologies is hosted in the Sakai SVN as a top-level module. The software for each technology may be organized into a number of Eclipse projects and Maven artifacts.
The following sections describe our functional enabling technologies.

Universal Components

Sakai’s universal components technology is one of the two most important enabling technologies, used by all Sakai applications. This supports the Sakai best practice of API programming (also known as inversion of control); separating the business logic, information modeling and persistence into a service (or manager), expressed as an API (java interfaces) that client software use to invoke these functions. A component is written to implement the service API. The orchestration of the end-user interface code, the Sakai tool, is the primary client of the application’s service; other Sakai tools and service components can also make use of the application’s features via its API.

The client software has no direct linkage to the implementation component; instead, they rely on injection or discovery to get a reference to the component at runtime. Clients are dependent only on the application APIs, not the component implementations.

Application APIs are deployed to a shared place in a Sakai system since they can be shared by any Sakai code; application components are packaged into private component packages (also called packs) where they run with their particular direct dependencies, isolated from any other Sakai code. This isolation avoids conflicts among the different components as they each get to pick their third party package versions without needing any cross-application coordination.

An application can provide many different implementations of its API, each working in different ways or in different environments; Sakai installations can choose which of these best fits their needs (or even create a custom component of their own). The application’s tools and the other applications in Sakai have no knowledge of which component is chosen, as long as the component satisfies the contract expressed in the service API.

Clients gain access to each API’s component by means of the Sakai universal component manager. This can be explicit (discovery) by a method call to the component manager, or implicitly, (injection), by the declaration of methods in the client to access each component, along with declarative information (usually in XML) to tell the component manager which APIs the client needs to be injected with.

 The universal component technology provides the component manager, to inject or discover components, and provides the ability to use component packages, to isolate each implementation (and its dependencies) from the rest of the Sakai system. Each pack has a separate class loader to accomplish this (modeled after Tomcat’s separate class loaders for each webapp). The packs include a components.xml file, written in the Spring framework bean definition language, to declare their universal components by the API that they satisfy. Components’ API dependencies and configuration parameters are specified here as well.

All components declared in all packs are available to the entire Sakai software system for use (thus the universal designation). The APIs (java interfaces) are deployed into a shared location commonly available to all code in the system (for tomcat, it is shared/lib). The APIs are dependency-thin; they will not likely cause many other packages to be pulled into the shared area.

A singleton “static cover” for the component manager’s implementation is available for any code that wants direct access to the component manager (this is not required, though; code can be written with no dependency on the component manager).

Universal components provides a configuration service to augment the Spring framework components.xml files. One or more “sakai.properties” files can be provided at runtime to override most all settings of all the components.xml files in deployed packs. This properties file can include additional configuration parameters that can be accessed by any Sakai code from the ServerConfiguraitonService API methods.

The configuration feature allows an entire Sakai system to be configured from outside the code base in a single location.

The Universal Components enabling technology is in the SVN module:

/svn/component

in the java package:

org.sakaiproject.component

The primary APIs of this technology include:

· ComponentManager

· ServerConfigurationService

The Eclipse projects are:

· component-api

· component-impl

The Maven artifacts created are:

· sakai-component-api

· sakai-component

· sakai-component-impl

· sakai-component-pack

Collaborative Tools

Sakai’s collaborative tools technology is the other most important enabling technology used by all Sakai applications. This extends the Java Servlet model, which isolates each collection of Servlets in separate webapps, to enable sets of tools (the user interface components of Sakai), packaged in separate webapps, to collaborate, sharing session information and request processing responsibilities.

Rather than being declared as a local resource to each webapp available at some webapp based URL, tools are registered with a central tool registry (the ToolManager), using a well-known tool-id, Unlike Servlets, Tools have no URL registration in the webapp’s web.xml file. Rather than responding directly to a request URL, a tool is invoked from a Sakai portal or other tool using the ActiveToolManager, which performs a Servlet redirect by tool id. Tools can be invoked from portals and other tools that live in any webapp.

Tools are invoked with additional contextual information that is unique to Sakai collaborating tools. Each invocation of a tool has a different context identifier and a different set of parameters, based on where the tool is placed in the Sakai context organization, and the tool parameters associated with that placement. (Context organization is currently handled by Sakai Sites).

Normal webapps can keep per-user state information on the server for multi-request interactions with end-users. Collaborative tools extends the HTTP Session model for Sakai’s needs; some information stored in end-user state is needed by all tools accessed by the end-user, and other information needs to be specific to the end-user, tool, and placement, so the tool can distinguish the state of a single end-user using the tool from different areas within the Sakai context structure.

The collaborative tool technology implements the HTTP Session system in this extended way; the Servlet container’s (i.e. Tomcat’s) session system is not used by a Sakai system. To the client code, the session looks like and is used like a normal HTTP Session; the appropriate scope of the session object is declared by the tool’s Servlet request filter setup, which is required for each Servlet technology that is used as a Sakai tool. The SessionManager is also available as a universal component for use by application code.

Most tool invocation is done by the Sakai portals, but tools can be invoked as helpers from other tools. The client tool uses the ActiveToolManager, providing the helper tool id to find the tool instance and delegate the current user request to the helper tool for handling. Information is shared between the client and helper using attributes stored in the tool placement scoped HTTP Session. The names of these attributes form an “API” contract, and are defined in a java interface that is included in the helper tool application’s API. Helper tools can either be specialized as a helper, or be a regular tool that also acts as a helper.

Because the tool invocation process is completely mediated by the ActiveTool manager between a portal and a registered tool (or a registered tool and another as a helper), and any tool can be implemented using any sort of Servlet based technology, portals can invoke all sorts of different kinds of tools, and client tools can invoke all sorts of different kinds of helpers. For example, a tool based on Velocity can invoke a JSF based helper tool, in the same way it would invoke a tool using any other Servlet technology, simply by using the ActiveToolManger.

The Collaborative Tools enabling technology is in the SVN module:

/svn/tool

in the java package:

org.sakaiproject.tool

The primary APIs of this technology include:

· ToolManager

· ActiveToolManager

· SessionManager

· Tool

· ActiveTool

· Session

· ContextSession

· ToolSession

· SessionbingEvent

· SessionBingingListener

The Eclipse projects are:

· tool-api

· tool-impl

· tool-util

The Maven artifacts created are:

· sakai-tool-api

· sakai-tool-impl

· sakai-tool-pack

· sakai-tool-util

DB

This module adds support for direct JDBC and Hibernate access to back-end databases.

For direct access, a JDBC data source that is configured in the sakai.properties (with a user id, password, database address and vendor, along with some other options) can provide database connections from a pool. Direct JDBC calls can be made with these connections.

The methods of the SqlService are available for almost direct access. These provide a higher abstraction over JDBC, but not too far, to make using the database easier.

If Hibernate is used to map the java objects to the database, the DB module’s configured database is used, and a Hibernate transaction manager is made available. Follow the Sakai Hibernate instructions (TODO) to package your mapping files and beans and register them with the global transaction manager.

To configure your back-end database connection, that is used by all Sakai applications, specify some configuration in your sakai.properties:

TODO

Hibernate applications can be set to auto-generate the application’s DDL if needed (this is controlled by the TODO parameter). Applications that are doing direct access or using the SqlService for your database access should use the SqlService’s auto-ddl feature, by providing a DDL file that can be run to detect and then populate if needed the tables and structures for the application. DETAILS TODO

The DB enabling technology is in the SVN module:

/svn/db

in the java package:

org.sakaiproject.db

The primary APIs of this technology include:

· SqlService

· SqlReader

Also included are Spring and Apache Commons DBCP extensions, provisioning of default configuration for the HSQLDB database connection pool / data source (overridable in sakai.properties).

The Eclipse projects are:

· db-api

· db-impl

· db-util

The Maven artifacts created are:

· sakai-db-api

· sakai-db-impl

· sakai-db-pack

· sakai-db-storage

Server Push

This module enables events on the app servers to cause changes on end-user agents (i.e. browsers) without actions taken by the end-user. DETAILS TODO

The Server Push enabling technology is in the SVN module:

/svn/courier

in the java package:

org.sakaiproject.courier

The primary APIs of this technology include:

· CourierService

· Delivery

· ObservingCourier

The Eclipse projects are:

· courier-api

· courier-impl

The Maven artifacts created are:

· sakai-courier-api

· sakai-courier-impl

· sakai-courier-pack

· sakai-courier-tool

Email Out

This module adds code above javamail to send emails either directly, or to collect them into a digest for periodic sending.

The Email Out enabling technology is in the SVN module:

/svn/email

in the java package:

org.sakaiproject.email

The primary APIs of this technology include:

· Digest

· DigestMessage

· DigestService

· EmailService

The Eclipse projects are:

· email-api

· email-impl

The Maven artifacts created are:

· sakai-email-api

· sakai-email-impl

· sakai-email-pack

Memory / Cache

This module provides a series of event-aware and time-based memory caches. Event-aware caches will notice changes to cached data; timed caches will keep data around for a fixed period of time (both may be combined). Low memory on the server is detected and all the caches can be cleared to restore memory- this can also happen from an administrator's command.

The Memory / Cache enabling technology is in the SVN module:

/svn/memory

in the java package:

org.sakaiproject.memory

The primary APIs of this technology include:

· Cache

· Cacher

· MemoryService

The Eclipse projects are:

· memory-api

· memory-impl

The Maven artifacts created are:

· sakai-memory-api

· sakai-memory-impl

· sakai-memory-pack

· sakai-memory-tool

Presence
This module adds the concept of end-users "being in" a "location". DETAILS TODO

[not yet migrated]

The Presence enabling technology is in the SVN module:

/svn/presence

in the java package:

org.sakaiproject.presence

The primary APIs of this technology include:

· PresenceService

The Eclipse projects are:

· presence-api

· presence-impl

· presence-tool

The Maven artifacts created are:

· sakai-presence-api

· sakai-presence-impl

· sakai-presence-pack

· sakai-presence-tool

JSF

This module adds support for JSF in Sakai, complete with tool dispatching and widget library.

[not yet migrated]

The JSF enabling technology is in the SVN module:

/svn/jsf

in the java package:

org.sakaiproject.jsf

The primary APIs of this technology include:

· TODO

The Eclipse projects are:

· TODO

The Maven artifacts created are:

· TODO

Velocity

This module provides support for the velocity based tools built to the “legacy” or “cheftool” pattern. DETAILS TODO

The Velocity enabling technology is in the SVN module:

/svn/velocity

in the java package:

org.sakaiproject.velocity

The primary APIs of this technology include:

· TODO

The Eclipse projects are:

· velocity

The Maven artifacts created are:

· sakai-velocity-tool

· sakai-velocity-tool-api

Util

This is a collection of classes of general use in Sakai. These are extensions or additions to the java standard classes. Most are static classes with methods that can be called.

General exceptions are in here. The id manager, too. Thread local manager can be found here, as well as the TimeService. Also the util classes Web, Xml, FormattedText, ResourceLoader, StringUtil, Validator and others.

Someday we may find better packaging of these little things, but for now, Util is their home.

The Util enabling technology is in the SVN module:

/svn/util

in the java package:

org.sakaiproject.util

org.sakaiproject.id

org.sakaiproject.thread_local

org.sakaiproject.time

The primary APIs of this technology include:

· IdManager

· ThreadLocalManager

· TimeService

Also included is the Sakai log4j provisioning.

The Eclipse projects are:

· util

The Maven artifacts created are:

· sakai-util-api

· sakai-util-impl

· sakai-util-pack

· sakai-util-log

· sakai-util

Enabling Technologies - Information

Sakai applications deal with overlapping sets of information; some information is common to many applications. Applications achieve their interoperability and integration into Sakai in part by sharing certain information. Some information is made common to applications to allow central management of this information.

Some of the most important information the applications share include:

· End-user identities, profiles, preferences

· End-users groups

· Authorization permissions

· Information-context organization

· Usage events

· Course Management information

Each information model is accessed through a specific universal component; with a service API, a components package implementing the API and responsible for creation, location and persistence of the information, and entity interfaces, for each information unit modeled.

The information modeled can also be treated as generic Sakai entities; the model is described as a set of properties and values on each information unit (entity). See the Sakai Entity Bus description for more information.

Each information model component provides a complete lifecycle API (creation, access, updating, removal). Each model includes a default persistence implementation, usually backed by the common SQL back-end database configured for a Sakai installation.

Enabling information models also support integration into external information systems. This can take various forms:

· Information can be pushed from the external system into Sakai as a synchronization using the information model’s API, either from code within Sakai (possibly using the Sakai scheduler to run periodic synchronization jobs), or from outside, accessing the model’s API via web-service calls.

· Information can be accessed in real time as a provider that plugs into the component’s implementation; the implementation consults (and likely caches) the external provider as needed, combining the external information with that internally stored.

· Information can be completely accessed from an external system, in which case the model’s implementation becomes an interface to the external system with no internally created or persisted data; each connection to a specific external system would need a custom implementation of the component.

There is a subtle and important difference between enabling information models in Sakai and Sakai applications. Both will model information, and information from both can be used, via APIs and the Entity bus, from other applications. They differ in the primacy of the information that they model. Applications model information that is directly desirable to the end-user. Enabling information models model information that is of secondary importance to the end-user, but important as support to the applications to accomplish their primary mission.

The software for each of our enabling information technologies is hosted in the Sakai SVN as a top-level module. The software for each technology may be organized into a number of Eclipse projects and Maven artifacts.
The following sections describe our enabling information technologies.

Entity Bus

The Entity Bus technology provides support for treating the end-user-created data objects in Sakai, across all Sakai applications, as uniform entities, so that they can be consumed by other applications without direct API dependencies on the specific "entity producing" application.

An entity is, first of all, exactly what it’s application things it is. In a generic sense, an entity is exposed via the Entity Bus as an object with properties; property names come from a well know vocabulary defined by the application; property values are either simple strings or references to other entities.

An Entity, and the service which produces them, the EntityProducer, can also declare that they have common characteristics, other than the ability to produce entities as objects with properties. These are:

· URL able - the entity has a URL and will respond with an access request

· TODO

DETAILS TODO

The Entity Bus enabling technology is in the SVN module:

/svn/entity

in the java package:

org.sakaiproject.entity

The primary APIs of this technology include:

· Entity

· EntityProducer

· EntityManager

· TODO

The Eclipse projects are:

· entity-api

· entity-impl

· entity-util

The Maven artifacts created are:

· sakai-entity-api

· sakai-entity-impl

· sakai-entity-pack

· sakai-entity-util

User

This models information about Sakai end-users. Each user is identified with a unique Sakai provided (or externally provided) identifier; this identifier is to be used by applications when making associations between their modeled information and a user. Users also have an enterprise id, used to connect to external user-oriented information systems, and used by the end-user to authenticate with Sakai. Personal information, such as names, addresses, pictures, etc, is modeled in a user profile. Contact information, such as an email address or instant messenger profile, is modeled and used by applications to send notifications to end-users. Preferences for items of use to various Sakai applications are modeled and used by the applications to customize their behavior and appearance for each end-user.

The information model API includes a manager, the UserDirectoryService, and the User entity. The API is implemented with a Sakai JDBC backed service. The implementation supports the UserDirectoryProvider, which can be consulted in real-time for external user information. The API can also be used directly to periodically synchronize with external sources of end-user information.

A number of end-user and administrative tools are available to maintain and access the end-user model. These tools are packaged with the model (but in a way that they can be separately selected or not in a Sakai installation or distribution). These tools include:

· Admin User Editor – administrative control over all User entities

· Account – End-user tool to modify their enterprise id, password and contact information

· Profile – End-user tool to modify their profile (Note: Account and Profile need to be combined)

· Preferences – End-user tool to update their preferences.

· New User – End-user tool to self-register as a new user in the system.

The User model’s API also provides an authentication service, to determine if a given set of user identification “evidence” properly authenticates a known Sakai user, and if so, which one.

The User entity also supports the Sakai Entity Bus, making available all the information about the user as a set of properties named with a known vocabulary. The User entity’s properties are arbitrarily extensible, so applications can store additional information about end users.

The User enabling technology is in the SVN module:

/svn/user

in the java package:

org.sakaiproject.user

The primary APIs of this model include:

· UserDirectoryService

· UserDirectoryProvider

· User

· SakaiPerson

· Authentication

· Evidence

· PreferencesService

· Preferences

The Eclipse projects are:

· user-api

· user-impl

· user-util

· user-tool

The Maven artifacts created are:

· sakai-user-api

· sakai-user-impl

· sakai-user-pack

· sakai-user-util

· sakai-user-tool

Authorization Groups

This models information about groups of users and the permissions they have to do things in various Sakai applications. DETAILS TODO

The Authorization Groups enabling technology is in the SVN module:

/svn/authz

in the java package:

org.sakaiproject.authz

The primary APIs of this model include:

· FunctionManager

· PermissionsHelper

· SecurityAdvisor

· SecurityService

· AuthzGroupService

· AuthzGroup

· GroupProvider

· Member

· Role

Tools include:

· AuthzGroup Editor – an administrative tool

· PermissionsHelper – a helper tool

The Eclipse projects are:

· authz-api

· authz-impl

· authz-util

The Maven artifacts created are:

· sakai-authz-api

· sakai-authz-impl

· sakai-authz-pack

· sakai-authz-tool

Context

This models the organization of the various end-user visit-able “places” in Sakai. Each one is identified with a context id. The information modeled by an application is usually partitioned by context; so invoked from a particular context, the application shows (or highlights) the information for this context rather than all the information it has.

Context is currently handled by Sakai Sites, although in the future this will be extended and separated from the Site concept. As such, there is no code directly in support of Context in the current Sakai system.

Usage Events

This models the occurrences of "significant end-user events". These events represent things the end-users do in the applications, such as invoking a specific application function, creating or modifying a specific application entity, etc. Events can be stored to later report on system usage frequency and coverage. Events can also be monitored by applications in real-time as a inter-application notification system; the event watchers can use event creation to trigger related activity.

The Usage Events enabling technology is in the SVN module:

/svn/event

in the java package:

org.sakaiproject.event

The primary APIs of this model include:

· EventTrackingService

· Event

· UsageSessionService

· UsageSession

· NotificationService

· Notification

· NotificationAction

The Eclipse projects are:

· event-api

· event-impl

· event-util

The Maven artifacts created are:

· sakai-event-api

· sakai-event-impl

· sakai-event-pack

· sakai-event-tool

Course Management

This models an educational institution’s course offering and related student information. DETAILS TODO

The Course Management enabling technology is in the SVN module:

/svn/course

in the java package:

org.sakaiproject.course

The primary APIs of this model include:

· TODO

The Eclipse projects are:

· TODO

The Maven artifacts created are:

· TODO

Alias

Alias is a little data model that gives us a single name-space that acts as alternates to the entities in Sakai, which might otherwise be identified only by a UUID or single non-unique title. Alias is used mostly by the Mail Archive application, to give email addresses to Mail Archive channels; but can be used in other places as well.

The Alias enabling technology is in the SVN module:

/svn/alias

in the java package:

org.sakaiproject.alias

The primary APIs of this technology include:

· Alias

· AliasService

The Eclipse projects are:

· alias-api

· alias-impl

· alias-tool

The Maven artifacts created are:

· sakai-alias-api

· sakai-alias-impl

· sakai-alias-pack

· sakai-alias-tool

Site

Site gives us context (see the description of Context above) in Sakai; organizes pages of tools, and organizes membership (including sub-groups) and permissions. Site also implements the Tool technology’s Placement concept for Sakai.

The Site enabling technology is in the SVN module:

/svn/site

in the java package:

org.sakaiproject.site

The primary APIs of this technology include:

· Site

· SitePage

· ToolConfiguration

· SiteService

· Group

The Eclipse projects are:

· site-api

· site-impl

· site-tool

The Maven artifacts created are:

· sakai-site-api

· sakai-site-impl

· sakai-site-pack

· sakai-site-tool

- 19 -
Copyright 2006, Sakai Foundation, Creative Commons Attribution 2.5

