Sakai URLs

Glenn R. Golden

Sakai Framework Architect
March 23, 2005

A number of issues have converged lately to suggest a new way for URLs to be handled in Sakai.  These are:

· the desire to track end user action history to the request

· the desire for more “back button” behavior in our tools

· the unexpected bookmarking even of internal URLs with expectations of reuse

There seems to be a solution that addresses all of these issues.

Every function / mode of a tool will have a unique URL.

Each placement of a tool will have a unique URL root.

Every navigation technology (hierarchy browser, portal, etc) can define any URL scheme as long as it is considered “readable” by end users.

Each URL will always visit the same placed tool mode or function, differing over time when reused only in the dynamic content that the tool delivers.

No two navigation locations, no two tool placements, no two tool modes or functions will share the same URL.

All navigation requests are done with this “readable” URL as a GET.  All relevant information is encoded in the URL path, not in parameters or POST body.

All data modification requests are done to the same “readable” URL that produced the browser content with the form; are POSTed back to the tool, with all data stored in the POST body, not in the URL parameters.  Each data modification POST is answered with a redirect that is effected at the browser, either to the same URL, or to a different one corresponding to a navigation of some sort.

Tools and URLs

The user interface created by a tool will likely have links or form submits that generate new requests from the end-user browser back to the tool.  These fall into two categories:

· navigation requests

· data submissions

The reason to distinguish these requests is to handle refresh and back commands from the browser.

Navigation requests to tools can cause a browser history entry, so they can be unwrapped, and can change the URL associated with the browser’s window or iframe, to indicate the navigation destination within the tool, so a refresh would keep the tool in the same navigation state.

Data requests should not cause a browser history entry, and should not change the URL of the browser window or iframe.  A data request changes the state of the tool / end-user interaction, which is not simply changed by a browser back command.  A refresh after a data request should not re-submit the data.

Each Sakai navigator and portal will define a URL scheme for navigation.  This covers the all the way to a specific tool placement.  Each Tool should define a URL scheme for inner-tool navigation.  These schemes will be modeled on a static web site, where you start general at the left of the URL and proceed to drill down to more specifics as you move right.

Navigation requests, which have public URL visibility, should be encoded as requests to the navigation / portal, for this tool, context, and tool navigation state.  That way if the request is bookmarked or used out of context, there’s a chance it will look good and work again.  Navigation requests should be HTTP or HTTPS GET requests, with all portal and tool navigation information encoded by some scheme known to the portal and tool in the request URL.

Data requests should also be portal requests, back to the same URL that wrote the form being responded to.  Data requests should be HTTP or HTTPS POST requests, with all submit data in the POST body, not on the URL.  The portal / navigation code recognizes this and sends the POST to the appropriate tool.

Tools should do a redirect to a portal / tool URL as a response to a POST, to clear the browser history.

Tool URLs

The Servlet spec provides an interpretation of the request URL that invokes a Servlet.  After the transport, server and port numbers, the full URI path is divided into:

· context path: the portion of the request URI that indicates the context  of the request

· servlet path: the part of this request's URL that calls  the servlet

· path info: extra path information associated with  the URL

The Servlet has no real control over the context path or Servlet path; the former is set by the container, usually the name of the webapp folder, and the latter set in the web.xml in the servlet mapping.

When a Servlet needs to form a URL for a link or post back to itself, it needs to either hard code the URL, which makes assumptions about things outside the Servlet’s control and is a problem when the Servlet is re-used in different environments, or it needs to construct a URL from the request.

A constructed URL would include the transport, server and port from the request, or be a relative URL and leave these out.  Then it would need the context path and servlet path from the request.  This would be a URL that would come back to the Servlet.  Specific extra path information and parameters can be added for each particular URL.  The Servlet spec makes no provision for forming this URL; each Servlet must code it.

In Sakai, Servlet technology that act as Sakai Tools do not have a direct URL, but are instead invoked in various ways by navigators and other Tools as helpers.  The navigators in Sakai are responsible for translating some specific form of URL path into specific Tool invocations.  In a sense, the navigators take the place of the Servlet container and web.xml Servlet mapping in setting the “context” and “servlet path” of the request to the Servlet.

URLs made by the Servlet should still be similar to the request URL, i.e. URLs back to the navigator so it can make its way back to the Servlet.

But this situation is really not so different from the normal context / mapped Servlet call.  There’s a part of the request URL that the Servlet has to take on faith, the context and Servlet paths.  Then there’s a part that the Servlet itself works with, the path info.  The Servlet does not have to parse these, in fact, it does not have the necessary data to do so.  It must use the pre-parsed parts of the request object.

When we invoke a Tool, we set the request object so that we get the results we desire without the Servlet code having to do anything unusual.  We can take the part of the URL that the navigator uses, whichever navigator was invoked for this request, and place that in the context and servlet path of the request.  We can take the rest of the path and make that be the path information that the Servlet processes.

Then when the Servlet forms URLs they will be back to it via the route that happened to be in place for this request.  Then when the Servlet wants to process the request path it is there pre-parsed for it and the current navigation would not interfere.

