Sakai Framework Common APIs: 
Design and Application

August 14, 2005

Please direct questions or comments about this document to:
Glenn R. Golden, Sakai Framework Architect, ggolden@umich.edu
DRAFT II

Introduction

This documents the Sakai framework’s common APIs for 2.1, specifically the new support added for groups and structure, and the new authorization model.

The Common APIs are designed to be of use in common by all of the Sakai applications.  They are dependent only on the framework APIs and the utility classes.

The document describes the individual concepts involved, and then covers a series of applications of these concepts in Sakai.

Concepts:

· Entity

· Context

· Group

· Function

· Authorization

· Structure

Applications:

· sites 

· providers

· sub-grouping

· course management

· sectioning

· admin and affiliate users

· application responsible structure

· application structure using Sakai structure

Concepts

The following sections describe the individual concepts that make up the common APIs in the Sakai framework.  Common has a few additional APIs not described here (Agent and Authentication, for example).

Entity

An entity is data modeled by a Sakai application.  The granularity of entities are set by the applications, and usually represent the different “real world” domain things that the application models.

Examples of entities include:

· chat message

· announcement channel

· file in content hosting

· site

· group

· user

Entities are composed of many different units of data; these units are not usually entities.  Examples of things that are not entities are:

· id

· created-by user

· last-modified-by time

Most applications surface their entity model by providing a Java interface, and a manager interface to provide access to the application’s entities.

Entities are persistent; they live beyond runs of a particular application server, and are shared by all separate application servers in a cluster.  Sakai applications are responsible for making the data persistent and providing secure access to the entities.

Entities are identifiable.  Each one has a Sakai-wide unique and permanent identifier (UUID), allocated by the application.   A framework ID service exists that applications can use to get unique UUID values. Applications should be designed to accept an identifier to locate the entity.

Entities are contextualized.  The application associates each of its entities with one or many contexts.  Entities associated with the same context are related.  Applications should be designed to accept a context as a way to locate related collections of entities.

Context

A context is a name used by entities to form relations or groupings.  Context names can be any string values that one or more applications use to relate entities.

Applications are encouraged to use Sakai structure nodes for their context names, so as to make these the most common namespace for context, so that entities from all different Sakai applications can be related into contexts.  When using structure nodes as context, the node id is used as the context name (not the node name, which can change over time).

Entities are related by their contexts.  Each entity can be part of 0, 1, or more contexts.  The relating of entities into contexts can be used in various ways by applications, and is important for the authorization system.  

Group

A group is a set of people, each with a role in the group.  For example, a group could be:

· Chris with the “leader” role

· Kelly with the “member” role

· Shawn with the “observer” role

If an application scenario exists that could use groups but does not need to distinguish different roles, then a group could be made of people all with the “member” role (or any other arbitrary string, including the empty string) .

Group roles can be used in various descriptive and organizational ways by applications, and are important for authorization.

Function

A function is the name given to something end users do to an entity.  This includes any type of access or manipulation the application supports. Functions are defined by the applications, and registered with the Sakai framework. Functions are used in the authorization process.

Applications are encouraged to define fine-grained functions, one for each possible access or manipulation of the application’s entities.  This gives the end user the most options when designing permission assignment scenarios.

Functions are known by the application, and are used by the application when asking security questions.  Functions are known to the authorization system, and are used when creating permission grants.   Functions are registered with the framework, and will receive a permanent UUID value that can then be used by the application and authorization system to refer to the function.  This value will persist past server restarts and is shared among the servers in a cluster.

Functions are associated with an application, which provides a name to use as a function prefix when describing the function outside of the application’s context.  This name is set when the application registers its functions, and must be unique among all Sakai applications.

Functions each have a short name used for display purposes, such as “read” or “post” or “del.own”.  Functions each have a longer description used in the permission granting interfaces, so end users know what the function is used for.

Structure

Structure is a hierarchy of nodes that are of interest to the organization using Sakai.  The structure will usually be derived from a combination of the org. chart for the institution, the navigation requirements for the Sakai based service, and the structure of the entities within various Sakai applications.

Each node has a single parent, except for the single root node at the top of the hierarchy.  Each node has 0 or more children.  Nodes have short, meaningful names that are locally unique (i.e. unique among siblings), and a UUID for reference.  The names form a unique path from the root to each node.

Structure can be used in various ways by applications, (examples: navigation, aggregation, implementing entity structure), and is important to the authorization system (grant inheritance) and to entities (applications are encouraged to use node ids for their context names).

Many Sakai applications have internal structure organizing their entities.  Applications can continue to implement their internal structure internally, but may instead choose to extend the Sakai structure with nodes that implement their internal structure.

Authorization

Authorization is the process of deciding if an end user can perform some function on an entity.

Authorization is the responsibility of each Sakai application. The application can use the Sakai authorization manager when it needs to ask authorization questions, if it would like to take advantage of the features built into the authorization system, and participate in Sakai-wide permission setup.  However since the Sakai application is fully responsible for authorization, each one is free to choose to do things in some other way.

The most common question supported by the Sakai authorization API is the boolean one:

· can a single user (usually the current user) do a single function on a single entity

The authorization API also answers various forms of Collection returning questions, such as:

· which functions a user has permission to for a given entity

· which users are permitted a certain function for a given entity

· which entities a given user is permitted a specific function to, etc.

Authorization is expressed as a collection of grants.  Each grant gives some users permission for some set of functions on some set of entities.

Note that the singular authorization question, which deals with single user, function and entity, is more granular than the authorization grants, each of which is usually multiple, referencing sets of users, functions, and entities. Fine-grained queries allow flexibility in making grants; courser grained grants make grant management easier.

Grants can be given to individual users, but are usually given to groups to make management easier. A grant given to a group applies to all members of the group.  Group grants optionally include a role.  Group role grants apply only to the members of the group that have the role.  Group grants apply to the current membership of the group, and adjust to this as the group membership changes over time.

Grants can also be made to the group-like virtual set of end users, to any end user (i.e. a public or “anon” grant), or to any end user who has authenticated (i.e. an “auth” grant).

A grant can be for a single function, or a set of functions.

Grants can be for individual entities, but are usually for multiple entities, to make management easier.  To grant to multiple entities, the grant is made for a context.  A grant for a context applies to all the entities that claim they are part of the context.  Context grants apply to the current set of entities in the context, and adjust to this as the entities that are part of the context change over time.

Since applications are encouraged to use structure node ids as context names, grants can be made to a node in the structure (this means the grant is made with a context name that matches the node id in the structure).  Grants made to a node apply to any entity that claims to be part of a context that matches the node id.

Grants made to a node in the Sakai structure support an inheritance feature.  Like other context grants, they apply to any entity claiming to be in the context.  In addition, the grant is applied to any entity that claims to be in any context that matches a node id in the Sakai structure that is a descendent of the granted node.  Grants “flow down” the structure to descendents; grants are inherited from parent nodes.

This inheritance is selective, and by default does not occur.  To cause a node to receive grants flowing down from above, an inheritance grant is made on that node.  This grant simply marks the node as one that inherits grants (it does not specify function(s) or user(s)).

Normal permission grants are blocked from flowing down the hierarchy, flowing only along a path through the hierarchy that is made up of nodes granted inheritance.  Administrative grants are another form of grant that will flow to all descendent nodes below the granted node.  An administrative grant still only applies to the users and functions of the grant, but will apply to all the entities claiming context in any node in the hierarchy below, even if there are not inheritance grants along the path.

Applications

Many existing parts of Sakai will change to integrate these new features.  New features can be added that directly take advantage of these features.

Sites

A Sakai site is a navigation destination; a place in Sakai for end users to collaborate with a particular set of users on a particular set of entities.  Sites have a selection of tools, each one configured for the site, and a page and tool layout.  Sites have a skin, a published and joinable status, and some descriptive information.  Before 2.1, sites provide context for entities.

The Sakai portal (Charon) provides site navigation in the form of “tabs”, listing the end user’s site choices.  Tabs are selected based on what the end user has access to and the end user’s preferences.  This forms a direct, and flat, navigation of Sites.

The Site implementation has used the Realm service to handle the users and permissions for a site. 

With 2.1, the Site service and implementation will change as follows.

Sites will now have context, like all other Sakai entities.  This context will place a site in the Sakai structure.  This allows sites to be organized in the structure, so that in addition to the class and project sites we have been using, we can have sites for organization units above this, and we can have “sub” sites below. 

It looks like sites will have just one context.  Entities in general can have multiple, but for a site we might need to limit it to one.

Each site will probably require a new node added to the structure.  Site can be contextualized to existing structure nodes, but the bulk of nodes in the center of the structure will be nodes that do the job that site does now; providing a context for entities.  Creating a new site will usually also create a node for it.

The site creation process will be extended to include the placement of the site in the structure; the selection of an existing node, or the selection of a node to act as a new node’s parent for the site.

The current request context will change from being a site id to being the site’s context, a node id from the Sakai structure.  Entities will change from using the site id for their context, and will instead use the site’s context (a node id) as their context.

With sites contextualized at different levels of the Sakai structure, a Sakai portal can be made to offer hierarchical site browsing.  Site tab browsing can be extended to have an “up” tab, to go to the site at a parent node in the structure, and “down” tabs to list the sites found in descendent nodes of the structure.

A site’s participants will be made up of any group or user grants that allow the “site.visit” function. This replaces the use of realms for site participants.

Joining a site is more interesting now.  The site entity model needs to keep track of joinable status, the role given to the joiner, and also (new) the group for joining.  To join a site, the end user becomes added to the group with the role.  The grants on this group & role determine what the joiner can do with the site and the entities at and below the site’s context node in the structure.  To unjoin, the user’s role relationship with the group is removed.

The site joining feature can be extended to add finer permission control.  Rather than letting any authenticated user join, permission to join a site could be limited to some other set of groups / roles.  A “site.join” function can be introduced, and be included in grants.

To model what we allow now, to let anyone authenticated join, a “anon” grant of “site.join” can be made for the site’s context.  Make this an admin grant, add a structure node above a bunch of sites, and grant to this node, then all the sites created below will inherit “site.join” and will be joinable.

This could be further extended to allow different groups of users to join a site with different sets of permissions. Site can define a number of join functions, such as “site.join.1”, “site.join.2”, etc.  A site would keep track of a different joining group/role definition for each possible join function.  Grants of these different functions could be made to different groups.  The join process would determine which join functions the user has permission for, check with the site to see which group/role go with those functions, and assign the user to the appropriate group.  If there is more than one that applies, we can let the end user pick how they want to join the site.

Providers

Groups, structure, and grants in Sakai will need to be coordinated with information outside of Sakai, as well as being defined by Sakai tools and applications.  Providers are the software components that do this coordination.  They are usually hooked up to enterprise systems, and need to select, filter, translate, and possibly override the enterprise information, and merge it in with the internally defined Sakai information.

The Course Management (CM) API providers are likely to supply most of the group and structure information for a Sakai used in an educational institution.  These providers, and the CM API, supply information modeling and terminology closer to the domain of educational institutions.  It is the CM implementation’s responsibility to translate the provided CM information into group and structure and grant information.

For non-educational uses, (even in educational institutions), direct providers for group, structure and grants can be written.

Sub-Grouping

Note: this section to be completed…

The basic idea is that there are no sub “groups”, i.e. the group concept does not include a sub-grop concept.  Groups consist of end users with roles, they do not include other groups.

To support a “sub-group” like scenario, such as the desire to have a “main” site for a population of users, and separate sites for different subsets of these people, we can use the common API concepts of group, grant and structure.

When showing a list of people to select for a subset site, the interface can use the “site.visit” folks from the main site.  The subset has a full site, group, and node in the context.   The node can be placed below the node used by the main site.  The group and grants and site are otherwise not special.

Course Management

Note: this section to be completed…

Sectioning

Note: this section to be completed…

The current requirements for class sections have a single site for the class, with knowledge of the class sections.  (Note that in some cases end uses will want separate sites for sections or subgroups, and in other cases this single site with filtering of entities will be desired.)

Each section will be modeled as a group of users with their section roles.  The class will also have a group of users with their class roles.  These groups will be used to make grants for site and entity access.

The class will have a site, and a node in the structure for context. All entities meant for the class will also be in this context.

Sections will have additional nodes in the structure as children nodes to the class node.  These nodes will NOT have inheritance grants, so that they can have their own permissions.

“Section aware” applications will have an additional feature related to assigning the context for the application’s entities.  Rather than just assigning the entity to the current (i.e. class, or site) context, the end user will be asked to select the context(s) for the entity.  The end user will have the option to select the class context, for class level access, or to select from among the section contexts, for section specific accesses.  The end user could also be offered the choice of marking the entity as public.

This is a process of entity context assignment, not grants or groups.

Grants would already be established for the different groups created for the class and sections, applying to the contexts which are the class and section nodes in the structure.  Once an entity is assigned to it’s context(s), it would participate in these grants.

Instructor or organizer type user roles in the class can be given administrative grants to the class context node, so they have full access to all entities related to the class, no matter how they are contextualized.

Applications can be made further aware of this situation by querying the Sakai structure and then getting lists of entities for the class and various sections, depending on which sections the current user has permissions to.  This can be used to organize the display of the information, or filter it, or make it further structure / section / subgroup aware.

Admin and Affiliate Users

Up till now, any user marked as an “admin” user could do anything anywhere in Sakai.  The security implementation hard coded special notice of a user id “admin” or any user granted “site.upd” in the realm “/site/!admin”, and avoided any further security checks, just saying “yes”.

Affiliate users (this is a term from U of M’s CTools for administrative users from various departments in the university; other institutions have similar needs) were given access to all of the sites in their domain.  Affiliates are like Admin users, but restricted as to which sites they have access to.  These names were hard coded into the site setup tool so these users could be added to any site created in various contexts.

Both of these applications, a full Sakai admin, or a more limited affiliate, can be implemented with our new common APIs.  Rather than any hard coding of users or sites, admin users can be granted functions to nodes near the root of the Sakai structure.  The context used in the grant determines the subset of the full structure that the grant applies; the grants are admin grants so they will flow all the way down the structure.

A full admin is granted functions at the root of the structure.  An affiliate is granted functions at a node that represents the affiliate user’s area of responsibility, a school or department, for instance.

This model lets us have a much more flexible “admin” model.  Say we are “hosting” different administrative domains in our Sakai.  We model this as a set of nodes right under the root node.  Each domain would want its own admin users.  These are done as grants to, not the root node, but the children nodes of the root.

Application Responsible Structure

Applications that organize their entities with some internal structure can just continue to model that structure internally in the application.  The announcements application is a good example.

The announcement application organizes announcements into channels.  This structure will continue to be handled internal to the application.

The announcements are entities, as are the channels, so grants can be made directly to either of these.  Grants made to the channel also apply to any announcement in the channel; this “inheritance” must be modeled by the application.  This is done by making each announcement include as its context the channel’s id, along with the real context (which was site but is now the site’s context node).  Announcement channels can list just the context node for context.

It looks like we have inheritance of grants from the channel to the messages, but we do so   without creating a node for the channel in the structure, and without making an inheritance grant on that node so it inherits grants from the structure above.  The only node we need is the single one that the site, the announcements and channel, and all other related entities use as their context.

While we could create a node for each channel, and a grant for that node, and then use that node for the channel and message entity contexts, it is up to the application to choose whether to do this or not.

Application Structure using Sakai Structure

Applications with internal structure can use the Sakai common APIs to implement this structure.  The content hosting API is a good example of this.

Content hosting models collections (folders) and resources (files).  Collections are nested; resources live in a collection.  Collections and resources are both entities, so grants can be made directly on either.  Grants made on collections also apply to any collection or resource contained in the collection, or any “descendent” collection.  Content hosting creates a hierarchy of collections, and models grant flow down the hierarchy.

This is so close to the Sakai structure and authorization system that we will implement the structure of the content hosting API using Sakai framework’s common APIs.  Each collection will be modeled as a node in the structure.  Information about a collection will exist as a collection entity, as before, which has as its context the collection’s node in the structure.  Resources will continue to exist as entities, each with context set directly to the node for the containing collection.

Collection nodes will each have an inheritance grant, allowing grants to flow down from above.  The top of the collection hierarchy for any organization area of Sakai (class, workgroup, my workspace, etc) would be contextualized to a site’s context node.

Grants can be made to resources.  Grants can be made to collections.  Grants can be made to the site context.  Because all the collection nodes have inheritance grants, grants made to the site context or collections flow down the content hosting collection hierarchy to all the enclosed collections and resources.

The content hosting implementation will call on the structure and authorization APIs to coordinate the content hosting data model with the structure and grants. As collections are added, structure and grants will be added; as collections are deleted, structure and grants will be removed.

Collections and resources can be attached to any node in the structure, not just nodes setup for site organization.  This means a resource can be added to a department node, or a collection and resources added to a division.

Even more interesting possibilities arise.  Consider if announcements actually did make a node for a channel, and even for each announcement.  Then we can attach resources directly to the nodes of the announcement to act as attachments.

Special features, such as “dropbox”, can be more easily implemented without any special coding, just by creating structure and grants appropriately.

- 11 -

