Sakai 1.5 -> 2.0.0 Database Conversion

Glenn R. Golden

Sakai Framework Architect

June 16, 2005

Converting existing Sakai 1.5 based installations to 2.0 is a simple process, but one that requires some local customization.  The conversion tasks fall into these categories:

· rename tables and sequences

· drop unused tables and sequences

· create new tables, sequences, indexes

· expand some field lengths

· update site definitions with new tool ids

· update site types

· update site skins

· optionally replace use myWorkspace definitions


· optionally replace the Gateway site

All the conversion can be done with SQL commands against the database.

The conversion to create new tables can also be done by starting an instance of Sakai, with auto-ddl enabled, using the otherwise converted database, and letting it auto-create and populate the new tables.  Once this is done, your DBA might want to move things around to different table spaces, etc.


The alternate to running the auto-ddl is to manually find the .sql files that create and populate the new tables from the source code, let your DBA have at them, and run them manually.

The local changes to the conversion process involve picking which optional parts to run, what you want to do about skins and user myWorkspaces, and any additional changes you want to make.

The examples in this document have been written for and tested with Oracle.  MySQL syntax may be slightly different.

The SQL command part of the conversion takes just a few minutes.

The commands from this document are in the source code, but not in the released 2.0.0 source code.  You can find them here using a browser, svn client, or even webdav:

https://source.sakaiproject.org/svn/trunk/sakai/docs/sakai_1_5-2_0_conversion.sql
Table Renames

This is pretty simple:

alter table CHEF_EVENT rename to SAKAI_EVENT;

alter table CHEF_DIGEST rename to SAKAI_DIGEST;

alter table CHEF_NOTIFICATION rename to SAKAI_NOTIFICATION;

alter table CHEF_PREFERENCES rename to SAKAI_PREFERENCES;

alter table CHEF_PRESENCE rename to SAKAI_PRESENCE;

alter table CHEF_SESSION rename to SAKAI_SESSION;

alter table SYLLABUS_DATA_T rename to SAKAI_SYLLABUS_DATA;

alter table SYLLABUS_T rename to SAKAI_SYLLABUS_ITEM;
The last two (for the Syllabus app) will fail if you don’t already run Syllabus.

There’s a sequence that we also need to rename:

rename CHEF_EVENT_SEQ to SAKAI_EVENT_SEQ;

Drop Unused Tables and Sequences

There is one sequence we no longer use:

drop sequence CHEF_ID_SEQ;

Expanded Fields

With our new UUID generator, the fields in the database that held ids need to be expanded to hold 36 characters:

alter table ANNOUNCEMENT_MESSAGE modify MESSAGE_ID VARCHAR2(36);

alter table CALENDAR_EVENT modify EVENT_ID VARCHAR2(36);

alter table CHAT_MESSAGE modify MESSAGE_ID VARCHAR2(36);

alter table DISCUSSION_MESSAGE modify MESSAGE_ID VARCHAR2(36);

alter table DISCUSSION_MESSAGE modify REPLY VARCHAR2(36);

alter table MAILARCHIVE_MESSAGE modify MESSAGE_ID VARCHAR2(36);

alter table SAKAI_EVENT modify SESSION_ID VARCHAR2(36);

alter table SAKAI_PRESENCE modify SESSION_ID VARCHAR2(36);

alter table SAKAI_SESSION modify SESSION_ID VARCHAR2(36);

alter table SAKAI_LOCKS modify USAGE_SESSION_ID VARCHAR2(36);

Tool Id Changes

Tool ids were changes to be consistent.  These are what are stored in Site definitions, so we must update the sites:

update SAKAI_SITE_TOOL

set REGISTRATION=concat('sakai', substr(REGISTRATION,5)) where UPPER(substr(REGISTRATION,1,4)) = 'CHEF';

update SAKAI_SITE_TOOL set REGISTRATION='sakai.preferences' where REGISTRATION='sakai.noti.prefs';

update SAKAI_SITE_TOOL set REGISTRATION='sakai.online' where REGISTRATION='sakai.presence';

update SAKAI_SITE_TOOL set REGISTRATION='sakai.siteinfo' where REGISTRATION='sakai.siteinfogeneric';

update SAKAI_SITE_TOOL set REGISTRATION='sakai.sitesetup' where REGISTRATION='sakai.sitesetupgeneric';

update SAKAI_SITE_TOOL set REGISTRATION='sakai.discussion' where REGISTRATION='sakai.threadeddiscussion';

If you have been using the University of Michigan GradTools, you need to do this, also:

update SAKAI_SITE_TOOL set REGISTRATION='ctools.dissertation' where REGISTRATION='sakai.dissertation';

update SAKAI_SITE_TOOL set REGISTRATION='ctools.dissertation.upload' where REGISTRATION='sakai.dissertation.upload';

update SAKAI_SITE_TOOL set REGISTRATION='ctools.gradToolsHelp' where REGISTRATION='sakai.gradToolsHelp';

Site Types

There may be old site types in your data.  This will update them:

update sakai_site set type='project' where type='CTNG-project';

update sakai_site set type='course' where type='CTNG-course';

[OPTIONAL] Site Skins

The skin model has changed in Sakai 2.  Sites with skin settings that don’t exist in your system will look very strange until you fix their skin.  You might want to clear out all skins, reverting all sites to the default skin.

update SAKAI_SITE set SKIN=null;

At the University of Michigan, we ran code that detected the presence of the old skin scheme, and updated the skin and the site icon to match the new skin scheme.  Here’s an example:

update SAKAI_SITE set SKIN=null, ICON_URL='/ctlib/icon/art.gif' where skin='art.css';

update SAKAI_SITE set SKIN=null, ICON_URL='/ctlib/icon/bus.gif' where skin='bus.css';

update SAKAI_SITE set SKIN=null where skin='chef.css';

For the fist two, we detect the old skin name, and clear the skin but set an icon.  In the third case, we just clear that skin, as that is not used any more in our system.


You need to design the SQL commands to modify your site definitions to update your skins.

[OPTIONAL] User MyWorkspace Definitions

There are new features, such as Profile, that are available in Sakai that you might want to add to your user’s MyWorkspace sites.

One way to do this is to modify the template that is used to create new MyWorkspace sites, and then delete all the existing site definitions.  When your users log in, they will get a newly created MyWorkspace.

Deleting the sites can be accomplished with this:

delete from sakai_site_user where site_id like '~%' and site_id != '~admin';

delete from sakai_site_tool_property where site_id like '~%' and site_id != '~admin';

delete from sakai_site_tool where site_id like '~%' and site_id != '~admin';

delete from sakai_site_page where site_id like '~%' and site_id != '~admin';

delete from sakai_site where site_id like '~%' and site_id != '~admin';

This removes all user sites (sites starting with “~”) except the admin site, from all site related tables.

Any data they might have in their workspace (such as in schedule or resources) will be preserved, but modifications they may have made to their site structure will be lost.

Another option is to do nothing, and let the users modify their sites to pick up new features as they wish.

A third option is to craft SQL that inserts site pages and site tools into the sites.  This should be possible, and is an exercise left to the brave.

[OPTIONAL] Replace The Gateway Site

You can use this code to install the newly distributed Gateway site.  You can also modify the Gateway site (“!gateway”) using the normal tools in Sakai (admin site editor, options from the site itself).  Or, if you are happy with your Gateway site, you can leave it alone!

delete from sakai_site_user where site_id = '!gateway';

delete from sakai_site_tool_property where site_id = '!gateway';

delete from sakai_site_tool where site_id = '!gateway';

delete from sakai_site_page where site_id = '!gateway';

delete from sakai_site where site_id like '!gateway';

INSERT INTO SAKAI_SITE VALUES('!gateway', 'Gateway', null, null, 'The Gateway Site', null, null, null, 1, 0, 0, '', null, null, null, null, 1, 0 );

UPDATE SAKAI_SITE SET MODIFIEDBY='admin' WHERE SITE_ID = '!gateway';

UPDATE SAKAI_SITE SET MODIFIEDON=TO_TIMESTAMP('20031126034522061','YYYYMMDDHHMISSFF3') WHERE SITE_ID = '!gateway';

INSERT INTO SAKAI_SITE_PAGE VALUES('!gateway-100', '!gateway', 'Welcome', '0', 1 );

INSERT INTO SAKAI_SITE_TOOL VALUES('!gateway-110', '!gateway-100', '!gateway', 'sakai.motd', 1, 'Message of the day', NULL );

INSERT INTO SAKAI_SITE_TOOL VALUES('!gateway-120', '!gateway-100', '!gateway', 'sakai.iframe', 2, 'Welcome!', NULL );

INSERT INTO SAKAI_SITE_TOOL_PROPERTY VALUES('!gateway', '!gateway-120', 'special', 'site' );

INSERT INTO SAKAI_SITE_PAGE VALUES('!gateway-200', '!gateway', 'About', '0', 2 );

INSERT INTO SAKAI_SITE_TOOL VALUES('!gateway-210', '!gateway-200', '!gateway', 'sakai.iframe', 1, 'About', NULL );

INSERT INTO SAKAI_SITE_TOOL_PROPERTY VALUES('!gateway', '!gateway-210', 'height', '500px' );

INSERT INTO SAKAI_SITE_TOOL_PROPERTY VALUES('!gateway', '!gateway-210', 'source', '/library/content/gateway/about.html' );

INSERT INTO SAKAI_SITE_PAGE VALUES('!gateway-300', '!gateway', 'Features', '0', 3 );

INSERT INTO SAKAI_SITE_TOOL VALUES('!gateway-310', '!gateway-300', '!gateway', 'sakai.iframe', 1, 'Features', NULL );

INSERT INTO SAKAI_SITE_TOOL_PROPERTY VALUES('!gateway', '!gateway-310', 'height', '500px' );

INSERT INTO SAKAI_SITE_TOOL_PROPERTY VALUES('!gateway', '!gateway-310', 'source', '/library/content/gateway/features.html' );

INSERT INTO SAKAI_SITE_PAGE VALUES('!gateway-400', '!gateway', 'Sites', '0', 4 );

INSERT INTO SAKAI_SITE_TOOL VALUES('!gateway-410', '!gateway-400', '!gateway', 'sakai.sitebrowser', 1, 'Sites', NULL );

INSERT INTO SAKAI_SITE_PAGE VALUES('!gateway-500', '!gateway', 'Training', '0', 5 );

INSERT INTO SAKAI_SITE_TOOL VALUES('!gateway-510', '!gateway-500', '!gateway', 'sakai.iframe', 1, 'Training', NULL );

INSERT INTO SAKAI_SITE_TOOL_PROPERTY VALUES('!gateway', '!gateway-510', 'height', '500px' );

INSERT INTO SAKAI_SITE_TOOL_PROPERTY VALUES('!gateway', '!gateway-510', 'source', '/library/content/gateway/training.html' );

INSERT INTO SAKAI_SITE_PAGE VALUES('!gateway-600', '!gateway', 'New Account', '0', 6 );

INSERT INTO SAKAI_SITE_TOOL VALUES('!gateway-610', '!gateway-600', '!gateway', 'sakai.createuser', 1, 'New Account', NULL );

Getting new Table Created and Populated

Once your database is converted with the steps you have selected and customized so far, you still need to have the new Sakai applications’ database tables created and populated.

The easiest way to do this is to run an instance of Sakai with auto-ddl turned on.  The auto-ddl feature is by default turned on, and can be controlled in your placeholder,properties file.

The auto-ddl feature will recognize that most of the tables you need are already defined, and leave them alone.  But for the new applications, Samigo, Gradebook, Profile, etc, tables will be created and seed data will be inserted.

Once the Sakai instance starts up, you can shut it down and let your DBA study your resulting database.  She might want to move things into different tablespaces, and do other things that we pay them the big bucks to take care of.

If, on the other hand, said DBA wants to modify the SQL command before running them, then you need to harvest the auto-ddl scripts from the source code.  They can be found with a little digging.

Each application has some source code project that has a src/sql folder.  In there you will find a folder for each database technology (hsqldb, mysql, oracle).  And in there you will find the .sql file to create and populate the tables for that application.

For example, for the Syllabus application, the Oracle file is found:

sakai-src/syllabus/syllabus-app/src/sql/oracle/sakai_syllabus.sql

Find the sql files for the applications new to your Sakai, get them modified, and run them.

